Forbidden minors to graphs with small feedback sets

نویسندگان

  • Michael J. Dinneen
  • Kevin Cattell
  • Michael R. Fellows
چکیده

Finite obstruction set characterizations for lower ideals in the minor order are guaranteed to exist by the Graph Minor Theorem. In this paper we characterize several families of graphs with small feedback sets, namely k1-Feedback Vertex Set, k2-Feedback Edge Set and (k1,k2){Feedback Vertex/Edge Set, for small integer parameters k1 and k2. Our constructive methods can compute obstruction sets for any minor-closed family of graphs, provided the pathwidth (or treewidth) of the largest obstruction is known.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Forbidden minors and subdivisions for toroidal graphs with no K3, 3's

Forbidden minors and subdivisions for toroidal graphs are numerous. In contrast, the toroidal graphs with no K3,3’s have a nice explicit structure and short lists of obstructions. For these graphs, we provide the complete lists of four forbidden minors and eleven forbidden subdivisions.

متن کامل

The obstructions for toroidal graphs with no K3, 3's

We prove a precise characterization of toroidal graphs with no K3,3-subdivisions in terms of forbidden minors and subdivisions. The corresponding lists of four forbidden minors and eleven forbidden subdivisions are shown.

متن کامل

Forbidden minors for the class of graphs G with ξ ( G ) ⩽ 2

For a given simple graph G, S(G) is defined to be the set of real symmetric matrices A whose (i, j)th entry is nonzero whenever i 6= j and ij is an edge in G. In [2], ξ(G) is defined to be the maximum corank (i.e., nullity) among A ∈ S(G) having the Strong Arnold Property; ξ is used to study the minimum rank/maximum eigenvalue multiplicity problem for G. Since ξ is minor monotone, the graphs G ...

متن کامل

Partial tracks, characterizations and recognition of graphs with path-width at most two

Nancy G. Kinnersley and Michael A. Langston has determined [3] the excluded minors for the class of graphs with path-width at most two. Here we give a simpler presentation of their result. This also leads us to a new characterization, and a linear time recognition algorithm for graphs width path-width at most two. 1 History and introduction Based on the seminal work of Seymour and Robertson [4]...

متن کامل

Forbidden Directed Minors and Directed Pathwidth

Undirected graphs of pathwidth at most one are characterized by two forbidden minors i.e., (i) K3 the complete graph on three vertices and (ii) S2,2,2 the spider graph with three legs of length two each [BFKL87]. Directed pathwidth is a natural generalization of pathwidth to digraphs. In this paper, we prove that digraphs of directed pathwidth at most one are characterized by a finite number of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Discrete Mathematics

دوره 230  شماره 

صفحات  -

تاریخ انتشار 2001